Title: | Integration for the UM-Bridge Protocol |
---|---|
Description: | A convenient wrapper for the UM-Bridge protocol. UM-Bridge is a protocol designed for coupling uncertainty quantification (or statistical / optimization) software to numerical models. A model is represented as a mathematical function with optional support for derivatives via Jacobian actions etc. |
Authors: | Linus Seelinger [aut, cre]
|
Maintainer: | Linus Seelinger <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.0 |
Built: | 2025-03-08 03:30:54 UTC |
Source: | https://github.com/cran/umbridge |
Evaluate Hessian of model.
apply_hessian( url, name, out_wrt, in_wrt1, in_wrt2, parameters, sens, vec, config = jsonlite::fromJSON("{}") )
apply_hessian( url, name, out_wrt, in_wrt1, in_wrt2, parameters, sens, vec, config = jsonlite::fromJSON("{}") )
url |
URL the model is running at. |
name |
Name of the desired model. |
out_wrt |
Output variable to take Hessian with respect to. |
in_wrt1 |
First input variable to take Hessian with respect to. |
in_wrt2 |
Second input variable to take Hessian with respect to. |
parameters |
Model input parameter (a list of vectors). |
sens |
Sensitivity with respect to output. |
vec |
Vector to multiply Hessian by. |
config |
Model-specific configuration options. |
Hessian with respect to given inputs and outputs, applied to given sensitivity and vector.
Evaluate Jacobian of model.
apply_jacobian( url, name, out_wrt, in_wrt, parameters, vec, config = jsonlite::fromJSON("{}") )
apply_jacobian( url, name, out_wrt, in_wrt, parameters, vec, config = jsonlite::fromJSON("{}") )
url |
URL the model is running at. |
name |
Name of the desired model. |
out_wrt |
Output variable to take Jacobian with respect to. |
in_wrt |
Input variable to take Jacobian with respect to. |
parameters |
Model input parameter (a list of vectors). |
vec |
Vector to multiply Jacobian by. |
config |
Model-specific configuration options. |
Jacobian with respect to given input and output variables, applied to given vector.
Evaluate model.
evaluate(url, name, parameters, config = jsonlite::fromJSON("{}"))
evaluate(url, name, parameters, config = jsonlite::fromJSON("{}"))
url |
URL the model is running at. |
name |
Name of the desired model. |
parameters |
Model input parameter (a list of vectors). |
config |
Model-specific configuration options. |
The model output (a list of vectors).
Get models supported by server.
get_models(url)
get_models(url)
url |
URL the model is running at. |
List of models supported by server.
Evaluate gradient of target functional depending on model.
gradient( url, name, out_wrt, in_wrt, parameters, sens, config = jsonlite::fromJSON("{}") )
gradient( url, name, out_wrt, in_wrt, parameters, sens, config = jsonlite::fromJSON("{}") )
url |
URL the model is running at. |
name |
Name of the desired model. |
out_wrt |
Output variable to take gradient with respect to. |
in_wrt |
Input variable to take gradient with respect to. |
parameters |
Model input parameter (a list of vectors). |
sens |
Sensitivity of target functional with respect to model output. |
config |
Model-specific configuration options. |
Gradient of target functional.
Retrieve model's input dimensions.
model_input_sizes(url, name, config = jsonlite::fromJSON("{}"))
model_input_sizes(url, name, config = jsonlite::fromJSON("{}"))
url |
URL the model is running at. |
name |
Name of the desired model. |
config |
Model-specific configuration options. |
List of input dimensions.
Retrieve model's output dimensions.
model_output_sizes(url, name, config = jsonlite::fromJSON("{}"))
model_output_sizes(url, name, config = jsonlite::fromJSON("{}"))
url |
URL the model is running at. |
name |
Name of the desired model |
config |
Model-specific configuration options. |
List of output dimensions.
Check if model's protocol version is supported by this client.
protocol_version_supported(url)
protocol_version_supported(url)
url |
URL the model is running at. |
TRUE if model's protocol version is supported by this client, FALSE otherwise.
Check if model supports Hessian action.
supports_apply_hessian(url, name)
supports_apply_hessian(url, name)
url |
URL the model is running at. |
name |
Name of the desired model. |
TRUE if model supports Hessian action, FALSE otherwise.
Check if model supports Jacobian action.
supports_apply_jacobian(url, name)
supports_apply_jacobian(url, name)
url |
URL the model is running at. |
name |
Name of the desired model. |
TRUE if model supports Jacobian action, FALSE otherwise.
Check if model supports evaluation.
supports_evaluate(url, name)
supports_evaluate(url, name)
url |
URL the model is running at. |
name |
Name of the desired model. |
TRUE if model supports evaluation, FALSE otherwise.
Check if model supports gradient evaluation.
supports_gradient(url, name)
supports_gradient(url, name)
url |
URL the model is running at. |
name |
Name of the desired model. |
TRUE if model supports gradient evaluation, FALSE otherwise.